FEED EFFICIENCY IN THE ITALIAN HOLSTEIN: WORK IN PROGRESS

Raffaella Finocchiaro PhD Italian Holstein Association (ANAFI)

INTRODUCTION

- Feed Efficiency: Quantity of milk produced per quantity of dry matter intake
 - Feed cost → Half of the total costs of dairy production
 - Increase profitability of dairy production?

Reduce feed costs by improving feed efficiency

- Feed trait → Dry Matter Intake (DMI):
 - Direct phenotypes are scarce → difficult to collect (expensive & labor-intensive)
 - Indirect phenotypes: milk yield & content; maintenance of the cow (body weight and/or conformation traits)

DMI & different approaches

- Heritable trait & varies across lactation stages and it is highly correlated with production and maintenance traits.
 - How to obtain this trait?

ANAFI

- One way to obtain breeding values → genomic selection
 - phenotypes are measured in a subset of the population, and genomic predictions are calculated for other animals that have genotypes but not phenotypes.
- Another way: Prediction formulas based on routine data-collection
 - → Indirect measures: for the «trait» can be used to asses genetic variation.

→ Prediction trait: a) Easy recordable; b) Routinely recorded; c) Inexpensive to measure; d) Heritable; e) Genetically correlated with the trait of interest

MANAFI

Italian Holstein state of the art

- Prediction equations for Live Weight (Finocchiaro et al., 2017 – ICAR Edinburgh June 2017), developed algorithm to predict live weight (based on real weight and type traits)
- Currently setting up breeding value estimation for Feed Efficiency by means of indirect traits.
- Since September 2015 Member of the ICAR Feed&Gas WG and gDMI II (international cooperation)
 - Analyzing a pilot data set on individual cow and heifers feed intake together with the Universities of Milan and Padua.
 - Individual bull feed intake experiment will be set up at the ANAFI genetic center will be set up soon.

Experimental farm in Lodi – University of Milan

Live weight

- Tool for herd management and monitoring animals
- Used for calculating energy balance for a feeding ration
- Size of animals is related to animal maintenance costs, feed efficiency and gas emission
- Live weight data
 - Routine availability required \rightarrow NO ROUTINE COLLECTION
 - **Solution**: Estimate live weight from existing routine data
 - Age at type scoring
 - Type scores
 - ANAFI \rightarrow developed algorithm to predict live weight

M ANAFI

Work in progress

- Set-up phenotypic and genetic prediction equations for live weight using type traits
 - Estimate genetic parameters for live weight
 - Estimate selection indices for live weight
- Use of live weight for other purposes:
 - Functional index → IES (Economical & Functional index) → New Anafi EBV (August 2016)
 - 2. Feed efficiency
 - Predicted feed efficiency (short term)
 - Predicted feed efficiency including DGV estimates based on individual measurements (long term)

Live weight work

- 36 herds with in total 6,895 individual weights from 3,256 cows in different parities
 - Weighing through milking robots (2013-2015)
 - Average live weight: 624.37 ± 64.24 kg

• Editing

- Only first parity cows retained \rightarrow 862 cows in 30 herds
- Stage of lactation max 12 months; Cow age 22-41 months
- Max days between individual live weight and type scoring ± 30 d

Traits	Mean±SD	Range
Measured weight (kg)	588.99±50.12	500-700
Lactation stage (days)	141.57±78.35	10-365
Age at type scoring (months)	30.45±4.31	22-41

Phenotypic prediction of live weight

Setup model

MANAFI

- 1. Y = HYM + MC + SL + other predictors
- 2. Y (HYM + MC + SL) = other predictors

Y: measured weight
HYM: herd-year-months of weighing
MC: month of calving
SL: stage of lactation
Other predictors:

Age of cow at scoring ;
Stature, chest width, body depth, rump width, BCS (when available)

Phenotypic prediction of live weight: Model selection

	Linear terms	Quadratic terms	R ²
1	Age, Stature, Rump width	Chest width, BCS	0.78819
2	Stature, Rump width	Age, Chest width, BCS	0.78819
3	Age, Stature, Rump width	Age, Chest width, BCS	0.78825
4	Age, Stature, Body depth, Rump width	Chest width, BCS	0.79120
5	Age, Stature, Rump width	Chest width, Body depth, BCS	0.79155
6	Age, Stature, Body depth	Chest width, BCS	0.79025
7	Age, Stature	Chest width, Body depth, BCS	0.79057
8	Age, Stature, Chest width, Body depth, BCS	Stature, Chest width, Body depth, BCS	0.79354
9	Age, Stature, Chest width, Body depth, Rump width, BCS		0.79141
10	Age, Stature, Chest width, Body depth, Rump width		0.74594

Phenotypic prediction of live weight

Setup model

1. $Y = HYM + MC + SL + other predictors$	Y: measured weight
2. $Y - (HYM + MC + SL) = other predictors$	HYM : herd-year-months of weighing
	MC: month of calving
	SL: stage of lactation
Validation method	• Age of cow at scoring;
 Final data-set randomly splitted 	Stature, chest width, body
 70% reference set 	depth, rump width, BCS (when available)
 30% validation set 	

- Done twice
 - In validation sets correlations between measured weight and predicted weight have been estimated and ranged between 0.62-0.70.

Statistics & Genetic Parameter estimates

Trait	Mean±SD	Range	h ² ±SE
Measured weight	595.03 ± 61.27	500 – 700	
Predicted weight	598.29 ± 46.45	453 – 742	0.50±0.06

Algorithm applied to National Dataset

Trait	$Mean \pm SD$	Range	h ² ±SE	
Predicted weight 1 st parity cows	597.98 ± 41.24	500 - 700	0.01 0.01	
Predicted weight ≥ 2 nd parity cows	689.00 ± 50.82	550 - 800	0.21±0.01	

From live weight towards efficiency (1)

Feed efficiency = Milk/Dry matter intake (DMI)

- Several traits are considered in order to link those to feed efficiency:
 - Metabolic weight;

- 4% fat corrected milk yield and fat yield (FCM);
- Energy corrected milk (ECM).
- Based on these is possible to derive traits such as DMI or Feed efficiency
 - Metabolic weight (Live weight^{0.75}) is proportional to maintenance needs for animals (Kleiber, 1932);
 - ECM energy used in order to produce milk (Sjaunja et al., 1991).
 - DMI (NRC,2001);

ANAFI

From live weight towards efficiency (2)

Phenotypic estimates of full data-set

Trait	$Mean \pm SD$	Range
Milk yield kg/d	31.65±8.12	3,40-60,60
Protein %	$3,34 \pm 0,34$	2,12-4,56
Fat %	3,67±0,70	1,93-6,21
FCM	29,89±7,60	4,42-59,51
ECM	29.97±7.35	4.53-58.60
Predicted BW	601.14±42.77	450-700
Metabolic BW	121.35 ± 6.49	97.71-136.00
Predicted DMI	22.87 ± 2.93	11.41-35.09
Predicted FE	1.37±0.22	0.23-2.34

MANAFI

From live weight towards efficiency (3)

Preliminary phenotypic and genetic estimates

Phenotypic estimates of sample data-set

Trait	$Mean \pm SD$	Range
Predicted BW	598.15±39.86	450-700
Metabolic BW	120.90 ± 6.05	97.78-136.00
ECM	31.18±6.70	6.97-57.56
Predicted DMI	23.33 ± 2.73	12.86-34.63
Predicted FE	1.38 ± 0.20	0.45-2.25

Genetic estimates of sample data-set

Trait	h ² ±SE
Predicted BW	0.21 ± 0.01
ECM	0.36 ± 0.003
Predicted DMI	0.41 ± 0.003
Predicted FE	0.42 ± 0.003

Phenotypic feed efficiency trend

ANAFI

Feed efficiency versus total merit index (PFT) for young and proven bulls

ANAFI

EBV pFE and IES of Italian HF bulls

IES \rightarrow aim to maximize the genetic progress, both in the economic and for health and welfare traits.

IES \rightarrow show how many euros, estimated in the entire productive lifetime, will contribute the use of a given bull with respect to the average population

EBV pFE and IES of Italian HF bulls

Final remarks

- We're on our way to establish routine evaluation for:
 - Feed efficiency
- We aim at EBV, DGV and GEBV
 - Direct individual measurements together with a genomic approach, of DMI are very helpful for more efficient selection strategies and for a better genetic control on daily feed intake.

• Current selection goal already improves feed efficiency, but extra attention can increase genetic gain

- Indices will be included in total merit index
- Questions?